Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Yao-Cheng Shi

School of Chemistry, Yangzhou University, 130 XiMenWai Street, Yangzhou 225002, People's
Republic of China

Correspondence e-mail: yzssyc@yzcn.net

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.058$
$w R$ factor $=0.189$
Data-to-parameter ratio $=17.2$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

3-[(2-Hydroxyphenyl)amino]-1-phenylbut-3-en-1-one ethanol solvate

The title compound, $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{NO}_{2} \cdot \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$, has been synthesized by the reaction of benzoylacetone with 2-aminophenol in ethanol. The enaminone structure is stabilized by a strong intramolecular hydrogen bond ($\mathrm{N}-\mathrm{H} \cdots \mathrm{O}=\mathrm{C}$), while the one-dimensional infinite chain in the [010] direction is formed by the intermolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond between the enaminone and the ethanol solvent molecule.

Comment

Enaminones have been studied extensively, not only because of their very diverse reaction chemistry, but also owing to their applications in coordination chemistry (Kim et al., 2001; Doherty et al., 1999). As part of a systematic investigation of the chemistry of enaminones, the enaminone component of the title compound, (I), was obtained (Shi, Yang, Shen et al., 2004; Shi, Yang, Song et al., 2004) and its crystal structure is reported here.

(I)

The parent unsolvated enaminone has already been studied (Glowiak \& Sobczak, 1992). It crystallizes as two polymorphs, the orange triclinic form with two molecules, ($\mathrm{I} a$) and (Ib), in the asymmetric unit, and the colorless monoclinic form, (Ic). Although the corresponding bond distances and angles in (I) are very similar to those in ($\mathrm{I} a),(\mathrm{I} b)$ and (I $c)$, the most striking

The asymmetric unit of the title compound, showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 30% probability level. The intramolecular hydrogen bond is shown as a dashed line.

Received 23 February 2005
Accepted 21 March 2005
Online 31 March 2005

Figure 2
Packing diagram of the title compound. Dashed lines indicate hydrogen bonds. H atoms not involved in hydrogen bonding have been omitted.
difference between them lies in the dihedral angles between the $\mathrm{O}=\mathrm{C}-\mathrm{C}=\mathrm{C}-\mathrm{N}$ plane and the benzene and substituted benzene rings. The dihedral angles are 18.8 and 41.0° for ($\mathrm{I} a$), 14.3 and 56.8° for ($\mathrm{I} b$) and 28.1 and 85.5° for (Ic); in (I), the values are 21.96 (13) and 46.68 (13) ${ }^{\circ}$. For each of (I), (Ia), (Ib) and ($\mathrm{I} c$), the bond lengths in the $\mathrm{O}=\mathrm{C}-\mathrm{C}=\mathrm{C}-\mathrm{N}$ system indicate electron delocalization (Shi, Yang, Shen et al., 2004; Shi, Yang, Song et al., 2004; Gilli et al., 2000; Arici et al., 1999). Interestingly, the above dihedral angles suggest that neither the benzene nor the substituted benzene rings are involved in the conjugation of the $\mathrm{O}=\mathrm{C}-\mathrm{C}=\mathrm{C}-\mathrm{N}$ system.

As in ($\mathrm{I} a$), ($\mathrm{I} b$) and ($\mathrm{I} c$), the enamine N atom and carbonyl O atom in (I) form a strong intramolecular hydrogen bond which stabilizes the enaminone (Table 2). Strong intermolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds are also present in the crystal structure. These lead to infinite one-dimensional chains in the [010] direction.

Experimental

The title compound was synthesized by refluxing a solution of benzoylacetone and 2-aminophenol (1:1) in ethanol for 6 h . It was recrystallized from ethanol as yellow crystals which are unstable and easily lose ethanol to form the yellow enaminone [90% yield; m.p. 443-444 K; literature m.p. 437-438 K (colorless crystals), 437-439 K (orange crystals) (Glowiak \& Sobczak, 1992)]. IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 3159.61 (br, s, NH, OH), 1604.55 (vs, $\mathrm{C}=\mathrm{O}$), 1574.13 ($s, \mathrm{C}=\mathrm{C}$). UV $\left(\lambda_{\max }\right.$, in DMF): 256.00 (B band, 1.36×10^{4}), 359.5 (K band, $3.52 \times$ $\left.10^{4}\right) \mathrm{nm} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 12.35(1 \mathrm{H}, s, \mathrm{NH}), 8.61(1 \mathrm{H}, s$, $b r, \mathrm{OH}), 7.84-7.87,7.41-7.43\left(2 \mathrm{H}, m, 3 \mathrm{H}, m, \mathrm{C}_{6} \mathrm{H}_{5}\right), 6.82-7.03(4 \mathrm{H}$, $\left.3 m, \mathrm{C}_{6} \mathrm{H}_{4}\right), 5.66(1 \mathrm{H}, s, \mathrm{CH}), 1.61\left(3 \mathrm{H}, s, \mathrm{CH}_{3}\right)$.

Crystal data

$\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{NO}_{2} \cdot \mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}$
$M_{r}=299.36$
Monoclinic, $P 2_{1} / n$
$D_{x}=1.172 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 874
reflections
$\theta=2.8-24.6^{\circ}$
$\mu=0.08 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Block, yellow
$0.24 \times 0.22 \times 0.16 \mathrm{~mm}$

Data collection

Bruker SMART 1000 CCD areadetector diffractometer
φ and ω scans
Absorption correction: multi-scan (SADABS; Sheldrick, 1996; Blessing, 1995)
$T_{\text {min }}=0.967, T_{\text {max }}=0.987$
9539 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.058$
$w R\left(F^{2}\right)=0.189$
$S=1.03$
3484 reflections
203 parameters
H -atom parameters constrained

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.098 P)^{2}\right. \\
& \quad+0.1387 P] \\
& \text { where } P=\left(F_{o}{ }^{2}+2 F_{c}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.36 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=
\end{aligned}
$$

> 3484 independent reflections 1948 reflections with $I>2 \sigma(I)$
> $R_{\text {int }}=0.033$
> $\theta_{\max }=26.5^{\circ}$
> $h=-9 \rightarrow 6$
> $k=-11 \rightarrow 15$
> $l=-21 \rightarrow 23$

Table 1
Selected geometric parameters ($\left(\AA^{\circ}{ }^{\circ}\right)$.

$\mathrm{O} 1-\mathrm{C} 4$	$1.264(3)$	$\mathrm{C} 2-\mathrm{C} 3$	$1.385(4)$
$\mathrm{O} 2-\mathrm{C} 12$	$1.370(3)$	$\mathrm{C} 3-\mathrm{C} 4$	$1.420(3)$
$\mathrm{N} 1-\mathrm{C} 2$	$1.339(3)$	$\mathrm{C} 4-\mathrm{C} 5$	$1.496(3)$
$\mathrm{N} 1-\mathrm{C} 11$	$1.414(3)$		
$\mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 11$	$130.3(2)$	$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$124.1(2)$
$\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 3$	$120.6(2)$	$\mathrm{O} 1-\mathrm{C} 4-\mathrm{C} 3$	$121.9(2)$
$\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 1$	$120.1(2)$	$\mathrm{O} 1-\mathrm{C} 4-\mathrm{C} 5$	$118.5(2)$
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 1$	$119.4(2)$	$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$119.6(2)$

Table 2
Hydrogen-bonding geometry $\left(\AA{ }^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
N1-H1 \cdots O1	0.86	1.92	$2.628(3)$	139
O2-H2 \cdots O3	0.82	1.84	$2.657(3)$	171
O3-H3 \cdots O $^{\mathrm{i}}$	0.82	1.86	$2.685(3)$	178

Symmetry code: (i) $\frac{3}{2}-x, y-\frac{1}{2}, \frac{1}{2}-z$.
All H atoms were located in difference maps and were subsequently treated as riding atoms, with $\mathrm{C}-\mathrm{H}=0.93$ (olefinic and aromatic), 0.96 (methyl) or $0.97 \AA$ (methylene), $\mathrm{N}-\mathrm{H}=0.86 \AA$ and $\mathrm{O}-\mathrm{H}=0.82 \AA . \quad U_{\text {iso }}(\mathrm{H})$ values were set at $1.2 U_{\text {eq }}(\mathrm{C}, \mathrm{N})$, $1.5 U_{\text {eq }}\left(\mathrm{C}_{\text {methyl }}\right)$ or $1.5 U_{\text {eq }}(\mathrm{O})$.

Data collection: SMART (Bruker, 1998); cell refinement: SMART; data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: ORTEP-3 for Windows (Farrugia, 2005); software used to prepare material for publication: SHELXTL (Sheldrick, 1997b).

This work was supported financially by Yangzhou University.

organic papers

References

Arici, C., Tahir, M. N., Ülkü, D. \& Atakol, O. (1999). Acta Cryst. C55, 16911692.

Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
Bruker (1998). SMART (Version 5.051) and SAINT (Version 5.01). Bruker AXS Inc., Madison, Wisconsin, USA.
Doherty, S., Errington, R. J., Housley, N., Ridland, J., Clegg, W. \& Elsegood, M. R. J. (1999). Organometallics, 18, 1018-1029.

Farrugia, L. J. (2005). ORTEP-3 for Windows. Version 1.08. University of Glasgow, Scotland.
Gilli, P., Bertolasi, V., Ferretti, V. \& Gilli, G. (2000). J. Am. Chem. Soc. 122, 10405-10412.

Glowiak, T. \& Sobczak, J. M. (1992). J. Crystallogr. Spectrosc. Res. 22, 673678
Kim, J., Hwang, J. W., Kim, Y., Lee, M. H., Han, Y. \& Do, Y. (2001). J. Organomet. Chem. 620, 1-7.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Sheldrick, G. M. (1997b). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.
Shi, Y.-C., Yang, H.-M., Shen, W.-B., Yan, C.-G. \& Hu, X.-Y. (2004). Polyhedron, 23, 15-21.
Shi, Y.-C., Yang, H.-M., Song, H.-B. \& Liu, Y.-H. (2004). Polyhedron, 23, $1541-$ 1546.

